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Measurements made on stream flows in a chemical process network are expected to satisfy 
mass and energy balance equations in the steady state. Because of the presence of random and 

possibly gross errors, these balance equations are not generally satisfied. The problems of how 

to reconcile the measurements so that they satisfy the constraints and how to use the recon- 
ciled values to detect gross errors are considered in this article. Reconciliation of measure- 
ments is usually based on weighted least squares estimation under constraints, and detection 
of gross errors is based on the residuals obtained in the reconciliation step. The constraints 
resulting from the network structure introduce certain identifiability problems in gross error 
detection. A thorough review of such methodologies proposed in the chemical engineering 
literature is given, and those methodologies are illustrated by examples. A number of research 
problems of potential interest to statisticians are outlined. 

KEY WORDS: Constrained weighted least squares; Outlier detection; Nonlinear con- 
straints; Steady state processes; Chemical engineering applications. 

1. INTRODUCTION 

A modern chemical plant consists of a large 
number of process units such as reaction vessels, dis- 
tillation columns, storage tanks, and so forth, which 
are interconnected together by a complicated net- 
work of streams. Measurements of mass flow rates, 
temperatures, concentrations of components, and so 
forth are routinely made for the purpose of process 
control and process performance evaluation. These 
measurements are expected to satisfy mass and 
energy balance constraints associated with the pro- 
cess network when the process is in a steady state. 
The given constraints are generally not satisfied, 
however, because of the presence of random and pos- 
sibly gross errors (outliers) in the process data. The 
latter errors are due to miscalibrated or mal- 
functioning measuring instruments, unsuspected 
leaks, and so forth. 

An additional difficulty is caused by the fact that 
not all variables are measured because of cost con- 
siderations or technical infeasibility. Therefore it is 
necessary to adjust the measured variables and, if 
possible, estimate the unmeasured variables so that 
they satisfy the balance constraints; this is known as 
the data reconciliation problem. Moreover, the adjust- 
ments in the process data should be utilized to detect 

the presence of any gross errors so that suitable cor- 
rective actions can be taken; this is known as the 
gross error detection problem. These two problems 
have received considerable attention in the chemical 
engineering literature (Almasy and Szatno 1975; 
Crowe, Campos, and Hrymak 1983; lordache, Mah, 
and Tamhane 1985; Knepper and Gorman 1980; 
Kuehn and Davidson 1961; Madron, Veverka, and 
Venecek 1977; Mah, Stanley, and Downing 1976; 
Mah and Tamhane 1982; Murthy 1973; Nogita 
1972; Reilly and Carpani 1963; Ripps 1965; Ro- 
magnoli and Stephanopolous 1981). For reviews of 
the literature, see Hlavacek (1977) and Mah (1981). 
Industrial applications of data reconciliation have 
been discussed, for instance, by Smith, Indiveri, and 
Byrne (1969); Ham, Cleaves, and Lawlor (1979); and 
Woodward (1984). 

The main purpose of this article is to bring these 
problems to the attention of a wider circle of statis- 
ticians by presenting them in their basic essential 
mathematical framework with the usual assumptions 
made in the chemical engineering literature. We 
review in detail the methodologies proposed to solve 
these problems, illustrate them with examples, and 
indicate some of their practical and theoretical limi- 
tations. We also outline some open problems re- 
quiring further statistical research. 
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2. PRELIMINARIES 

2.1 Model and Assumptions 

Throughout this article we assume that the process 
is in a steady state. Typically the process data are 
automatically sampled and recorded at regular time 
intervals of 1-5 minutes. We are concerned with the 
snapshot of the process at a given instant of time 
(needed for on-line process control) or alternatively 
some sort of a smoothed average of the measured 
variables over a given period of time, say 60 minutes 
(needed for process evaluation). In either case we 
denote by y: n x 1 the vector of measured variables; 
y would be the data vector at a given instant of time 
in the former case and the averaged data vector in 
the latter case. For convenience, we shall assume the 
former case. 

We assume the following model: 

y = q + e, (2.1) 

where Tq: n x 1 is a vector of true values of the mea- 
sured variables and e: n x 1 is a vector of errors. A 
more general linear model involving a general design 
matrix (not necessarily an identity matrix) does arise 
in a few applications (e.g., see Madron et al. 1977) 
and can be readily handled, but for simplicity we 
have restricted to the model (2.1). In absence (pres- 
ence) of gross errors we assume that E(e) = 0 [E(e) = 
6 : 0], where 0 is a n x 1 null vector. Let cov(e) = :, 
where L is a positive definite matrix. Throughout this 
article we assume that S is a known matrix, although 
in most cases in practice it would be estimated from 
the process data. If the process is in fact in a steady 
state (i.e., if Tq, 1, and the constraint (2.2) are fixed 
over time), this is not an unrealistic assumption, since 
a fairly accurate estimate of 2 can be obtained by 
cumulatively pooling the separate estimates com- 
puted for successive time periods. Each period must 
be reasonably short, as E(y) may change over longer 
time periods because of changes in E(e), although q 
may remain constant. The foregoing discussion im- 
plicitly assumes that the successive vectors of 
measurements are independent. Some difficulties that 
arise due to time-dependence of measurements are 
discussed in Section 7. 

Let 4: m x 1 be a vector of true values correspond- 
ing to the unmeasured variables. The balance con- 
straints are assumed to be of the following linear 
form: 

measured variables, then (2.2) takes the form Bq = c. 
The data reconciliation problem is to find "good" 
estimates of 4 and q that satisfy (2.2). 

2.2 Process Considerations Leading to 
Constraints (2.2) 

We now explain how the constraints (2.2) are ar- 
rived at in practice. First, we note that a process 
network can be represented by a directed graph in 
which the nodes of the graph correspond to process 
units and junctions such as reaction vessels and stor- 
age tanks, and the arcs of the graph correspond to 
connecting streams or pipelines; the direction of each 
arc corresponds to the direction of mass flow in that 
stream. In a steady state, a mass balance equation for 
each component x node combination can be written 
as 

input-output + generation-depletion = 0. 

In a nonsteady state there will be an accumulation 
term on the right-hand side. Here all the quantities 
are measured as rates. For nodes involving no chemi- 
cal reaction (i.e., no generation or depletion due to a 
chemical reaction) we simply have input = output for 
each component (assuming no losses due to leaks, 
etc.). If all the nodes in a process network are of 
nonreacting type and all the constraints involve only 
the total (not component) mass balance at nodes, 
then [AIB] corresponds to the incidence matrix of 
the directed graph of the process network in which 
the (i, j)th entry is + 1 if stream j is an input to node 
i, - 1 if stream j is an output from node i, and 0 if 
stream j is not incident to node i (1 < i < q, 
1 < j < m + n). We refer to this as a pure network 
constraints case, which is illustrated by Example 2 in 
Section 2.3. Example 1 illustrates the case in which 
component mass balances are available but the 
nodes are of nonreacting type. 

For a reacting type node the information on the 
amount of each component produced or consumed 
may be computed from the extent and the stoichio- 
metric equation of the reaction. (The extent of a reac- 
tion is the degree of advancement or conversion of 
the reaction. Usually its rate of change, which has the 
units of moles per unit time, is used because other 
mass flows are measured as rates.) For example, in 
ammonia synthesis, nitrogen (N2) and hydrogen (H2) 
combine to form ammonia (NH3) according to the 
stoichiometric equation 

A + Bql = c, (2.2) 
where A: q x m and B: q x n are known constant 
matrices and c: q x 1 is a known constant vector. A 
and B will be referred to as the balance matrices as- 
sociated with the unmeasured and measured vari- 
ables, respectively. Clearly, if there are no un- 

N2 + 3H2-,2NH3. (2.3) 
Thus for the three components, N2, H2, and NH3, 
the coefficients in the reaction part of each mass bal- 
ance equation will be -1, -3, and + 2, respectively, 
each multiplied by the extent of the reaction. These 
coefficients are known as stoichiometric coefficients, 
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and they can always be written as integers because of 
the fact that all chemical compounds (products and 
reactants) contain integral numbers of different 
atoms and the atoms are conserved. The coefficients 
will be negative for reactants, positive for products, 
and zero for inert components. Example 3 in Section 
6 deals with the ammonia synthesis reaction. 

More generally, several chemical reactions may 
proceed simultaneously at a given node. In that case 
one needs to weight the stoichiometric coefficients of 
each reaction by the extent of that reaction. The ex- 
tents of the reactions are usually unmeasured vari- 
ables. 

Energy balances can be appended to mass bal- 
ances by regarding the energy flow rate as an ad- 
ditional "component." At reacting nodes one must 
also take into account the standard enthalpy change 
(which may be known from thermodynamic con- 
siderations) for each reaction. 

In summary, we note that detailed considerations 
of the process are required to arrive at the con- 
straints. Here we have not indicated how nonlinear 
constraints may arise; this topic will be taken up in 
Section 5. 

2.3 Examples 

We now give two examples to illustrate the basic 
model. 

Example 1 (Ripps 1965). Consider a single- 
process unit with two input streams and two output 
streams as shown in Figure 1. Here y = (.1858, 
4.7935, 1.2295, 3.8800)' is a vector of measured mass 
flows in the units of 1,000-pound moles per hour. No 
unmeasured variables are present in this example. 
The covariance matrix of y is assumed to be 2 = 
diag(2.89 x 10-4, 2.50 x 10-3, 5.76 x 10-4, 4.00 x 
10-2). 

There are three chemical components in each 
stream. The mole fractions of the components in each 
stream are assumed to be exactly known, and their 

Table 1. Mole Fractions of Components in Different Streams 

Component Stream 1 Stream 2 Stream 3 Stream 4 

1 .1 .6 .2 .7 
2 .8 .1 .2 .1 
3 .1 .3 .6 .2 

values are given in Table 1. Thus we obtain three 
balance equations that can be expressed in matrix 
form as follows: 

.1 .6 -.2 -.7- o 0- 

.8 .1 -.2 -.1 /2 = 0 

.1 .3 -.6 -.2 ?3 0 

_ 4_ 

where the 3 x 4 matrix on the left side is the balance 
matrix B and the null vector on the right side is the 
vector c. 

We shall return to this example later. 

Example 2 (Mah et al. 1976). Consider the pro- 
cess network shown in Figure 2. In this network, 
node E is the environment node (i.e., everything ex- 
ternal to the process), y ..., Ylo are measured flow 
rates, and xl, ..., x6 are unmeasured flow rates. Let 
rl, ... lo and X, ., 6 be the true values corre- 
sponding to these flow rates, respectively. If the only 
constraints are the total mass balance constraints at 
different nodes, then the balance matrices associated 
with the unmeasured and measured flow rates are as 
follows: 

A 

B- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

i1l 

1 1 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 

-1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

r/2 

-1 

0 0 
0 
0 
0 
0 
0 
0 

0 

U2 

0 
0 

1 
o 
0 0 
0 
0 
0 

0 

3 q/4 

0 0 
-1 0 

1 -1 

0 0 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 

-3 

0 
0 
0 

-I 
0 
0 
0 
1 
0 

/5 

0 
0 

-1 
0 
0 
1 

0 
0 
0 
0 

04 

0 
0 
0 
0 
0 
0 
0 

-1 
0 
0 

0 0 
0 0 

-1 0 
0 0 
0 -1 
0 0 
1 0 
0 0 
0 0 
0 0 

05 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

08 

0 
0 
0 
0 
0 

-1 

0 
0 
1 
0 

6 

0 
0 
0 
0 
0 
0 

0 
0 
1 

/9 r10 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

-1 0 
0 -1 

and c = 0. Note that in the preceding balance 
matrices we have omitted the row corresponding to 
the environment node so that the rows of the aug- 
mented balance matrix [A IB] are linearly indepen- 

TECHNOMETRICS, NOVEMBER 1985, VOL. 27, NO. 4 
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method is useful in deriving our analytical results in 
the sequel. 

Consider the p = q - r-dimensional orthogonal 
complement (null space) of the column space of A. 
Let P be a p x q matrix whose rows form a basis for 
this null space. Then 

PA =0, (3.3) 

Figure 2. Flow Diagram for Example 2. 

dent. This example is especially chosen to illustrate 
the pure network constraints case; no other numeri- 
cal data are therefore provided. We shall return to 
this example later. 

3. DATA RECONCILIATION 

Before we discuss the problem of finding good esti- 
mates of 4 and 'q, we must find the conditions under 
which the "trivial" estimate 

i = y = y and 4 solves A = -By + c (3.1) 

is ruled out. This estimate is referred to as trivial for 
the obvious reason that the fitted and observed y- 
vectors are the same. The following proposition gives 
a necessary and sufficient condition for the nonexist- 
ence of the trivial estimate. 

Proposition 1. The trivial estimate (3.1) is ruled 
out if r = rank(A) is less than q-that is, iff A is less 
than full row rank. 

Proof. For all y e R", ~ exists as in (3.1): 

u = -By + c is in the column space of A 
for all u e Rq 

<column rank(A) = rank(A) = q. 

We will assume hereinafter that r =- rank(A) < q. 
The weighted least squares method is commonly 

employed to estimate 4 and q because of its well- 
known optimality properties in the unconstrained 
case; for example, according to the generalized 
Gauss-Markov theorem (the Aitken theorem), it 
yields the minimum variance linear unbiased esti- 
mates. The weighted least squares estimates of 4 and 
T] are found by minimizing 

(y- Ti),- (y- q) (3.2) 
with respect to (4, tq) subject to (2.2). This problem 
can be solved as it stands, but here we give a method 
of solution due to Crowe et al. (1983), which proceeds 
by first eliminating 4 from the constraint (2.2). This 

where 0 is a p x m null matrix. The Crowe et al. 
(1983) method involves using P to eliminate 4 from 
(2.2) by premultiplying it by P. Thus the transformed 
problem is 

minimize (y - 'q)'- '(y - q) 

subject to P(A4 + Br) = Cq = d, (3.4) 

where we have put C = PB and d = Pc. We refer to 
C as the transformed balance matrix associated with 
the measured variables. (When there are no un- 
measured variables we take P = I, the q x q identity 
matrix, which means that the problem is untrans- 
formed and C = B.) 

The following method (proposed by Crowe et al. 
1983) can be used to construct P. First, column- 
reduce A, which is equivalent to postmultiplying it by 
an m x m nonsingular matrix G so that 

AG= Aol 0 . (3.5) 
_q x r qx(m -r)_ 

Let H be a q x q permutation matrix such that 

HAo= A1 r x r, 

A2_ P x r, 

where A1 is nonsingular. Then 

P= -A2A11l H . 
_ pxr _px p 

(3.6) 

(3.7) 

In the pure network constraints case, Mah et al. 
(1976) used graph theory to derive a decomposition 
procedure. This procedure eliminates the arcs with 
unmeasured mass flow rates (unmeasured arcs) and 
transforms the data reconciliation problem to one 
consisting of arcs with measured mass flow rates 
(measured arcs) only. This is achieved by aggregating 
any two nodes having an unmeasured arc between 
them, thus obliterating all internal arcs between 
them. All arcs external to these two nodes are pre- 
served by this merging. This procedure is repeated 
until all unmeasured arcs are eliminated. Data recon- 
ciliation is performed for the transformed network ob- 
tained in the preceding manner. Vaclavek (1969) had 
suggested a similar procedure, which he referred to as 
the reduced balance scheme. It can be shown that 
premultiplication of the constraint (2.2) by P is 
equivalent to this procedure. We illustrate this point 
by means of an example. 

TECHNOMETRICS, NOVEMBER 1985, VOL. 27, NO. 4 
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Y9 

Figure 3. Flow Diagram for Example 2, After Deleting Un- 
measured Variables. 

Example 2 (continued). For this example it can be 
easily checked that the Mah et al. (1976) procedure 
leads to the transformed network in Figure 3. The 
correspondence between the new nodes and the old 
nodes is as follows: E' = {E, 1, 3, 4, 8}, 1' = 2, 2' = 5, 
3' = 6, 4' = 9, and 5' = {7, 10}. Here the old nodes in 
braces are the ones that are merged together. 

It is easy to check that rank(A) = 5 and, therefore, 
p = 10 - 5 = 5. Following the procedure described 
for constructing P, we obtain 

0 
0 
0 
0 
0 

1 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
1 
0 
0 
0 

0 
0 
1 
0 
0 

0 
0 
0 
0 
1 

0 
0 
0 
0 
0 

0 
0 
0 
1 
0 

0 
0 
0 . 
0 
1 

Therefore the transformed balance matrix is 

71 72 73 74 75 76 77 78 79 10 

1' 0 
2' 0 

C = PB = 3' 0 
4' 0 
5' 0 

0 
0 
0 
0 0 

-1 
0 
0 
0 
0 

0 
1 
0 
0 
0 

0 
0 
1 
0 
0 

0 
0 
0 
0 
1 

0 
-1 
0 
0 
0 

0 
0 

-1 
1 
0 

0 0 
0 0 

0 . 
-1 0 
0 -1 

Note that C is precisely the incidence matrix corre- 
sponding to the transformed network in Figure 3. 
Also note that in the transformed network, yi is ob- 
literated (the column of C corresponding to Cl con- 
sists of all zeros). 

The solution to (3.4) is well known (Seber 1977, 
p. 85) to be 

il = y = y- 1C'(C:C')- (Cy- d). (3.8) 

Having found ij from (3.8), we obtain 4 by solving 
the equation 

A =-Bi + c = v (say). (3.9) 

The next proposition gives a necessary and sufficient 
condition under which a unique 4 satisfying (3.9) 

exists. Stanley and Mah (1981) referred to 4 as ob- 
servable if it can be uniquely estimated. 

Proposition 2. A unique solution , to (3.9) exists 
iff A is full column rank-that is, iff rank (A)= 
r = nm. 

Proof First we note that v lies in the null space 
of P (which is also the column space of A) because 
Pv = -PBi + P =-C + d = 0. The result fol- 
lows immediately. 

In the pure network constraints case, the result of 
Proposition 2 is equivalent to saying that 4 can be 
determined uniquely iff the unmeasured arcs do not 
form a cycle or a closed loop. This latter result was 
proved by Mah et al. (1976) using graph theoretic 
ideas. As can be seen from Figure 2, the unmeasured 
arcs x3, X4, and x5 form a cycle and, therefore, ~3, 

g4, and g5 cannot be uniquely determined. 

4. GROSS ERROR DETECTION 

4.1 Descriptions of the Tests 

The subject of outlier detection has received con- 
siderable attention in the statistical literature, and 
there are full-length books on the subject (Barnett 
and Lewis 1978; Cook and Weisberg 1981; Hawkins 
1980). Until recently, however, work in the chemical 
engineering literature has not drawn on this body of 
statistical research. A purpose of this article is to 
promote such an interaction. 

We now describe three types of statistical tests that 
have been proposed for detecting gross errors in pro- 
cess data. Of these the measurement test of Mah and 
Tamhane (1982) has many desirable properties and 
hence is discussed in more detail than the other two 
tests. 

Global Test 

For detection of gross errors, many authors (e.g., 
Almasy and Szatno 1975; Madron et al. 1977; Ripps 
1965) have suggested the use of a global chi-squared 
statistic constructed from the observed discrepancies 
in the constraints (referred to as nodal imbalances), 
namely [see (3.4)] 

w =Cy-d. (4.1) 
Under the hypothesis, Ho, that there are no gross 
errors present, w is p-variate normal with mean 0 and 
covariance matrix CIC' = f-I (say), and hence 
w'Tw - /z. Thus large values of the statistic 2 = 
w'Qw can be used to detect the presence of gross 
errors. An equivalent test is obtained by considering 
the residual vector 

r = y- y = YC'(CIC') '(Cy- d) (4.2) 

and constructing the quadratic form r'Tr, where v is 
any generalized inverse of LC'(CYC')- 1C'. It is 
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straightforward to show that w'lw = r'Vr. Note that 
the calculation of w and the statistics derived from it 
do not require that the data be reconciled first. 

A difficulty with this global test is that if it indi- 
cates the presence of gross errors, then an additional 
testing scheme must be used to identify the sources of 
these errors. Ripps (1965) proposed such a scheme 
that has been used in slightly modified forms by 
other authors (Nogita 1972; Knepper and Gorman 
1980; Crowe et al. 1983). In this scheme a set of s 
measurements (1 < s < p) suspected of containing 
gross errors is deleted (i.e., they are regarded as un- 
measured variables with corresponding changes in 
the related quantities such as y, E, A, B, P, etc.) and 
the /2 statistic is recalculated. We would expect to 
get a significant reduction in x2 if the "correct" set of 
measurements is deleted. This can be checked by 
comparing the calculated x2 with a designated per- 
centile from the 2 distribution. 

One could conceive of a scheme in which each 
subset of the n measurements is deleted in turn. 
(There are certain restrictions on the subsets of 
measurements that can be deleted. Clearly, the subset 
size cannot exceed p- 1. A further restriction is that 
the resulting A matrix must be full column rank ac- 
cording to Proposition 2.) For each subset, the Z2 
statistic is calculated and its P value is assessed by 
referring it to the corresponding x2 distribution. (This 
ignores the effect of multiple testing.) The subset of 
measurements that upon deletion yields the least sig- 
nificant (having the largest P value) Z2 is then labeled 
as containing gross errors. It turns out, however, that 
such a subset may include measurements that do not 
contain gross errors as indicated by the significantly 
large x2 statistics obtained by deleting them individ- 
ually. On the other hand, such a subset may exclude 
some measurements that contain gross errors, as in- 
dicated by the significantly small /2 statistics ob- 
tained by deleting them. For an illustration of this 
phenomenon, see the continuation of Example 1 
given at the end of this section. Therefore, usually the 
measurements are deleted one at a time, and those 
that yield significantly small x2 statistics are further 
tested by deleting them in groups. 

For the set of measurements identified as contain- 
ing gross errors, one can calculate, using (3.8) and 
(3.9), the adjusted vector (4, il) (where 4 includes the 
deleted set of measurements), which can be used for 
process evaluation and other purposes. 

Nodal Test 

Reilly and Carpani (1963) and Mah et al. (1976) 
independently proposed performing a separate test 
on each nodal imbalance (suitably standardized). 
Thus the test statistics are 

I Zi I = I \i I /X/(C'C')ii = I wi 1/. c, (4.3) 

where ci is the ith column of C (1 < i < p). These 
statistics can be compared against some common 
critical constant k. For example, one may choose k to 
control the familywise Type I error rate at some pre- 
assigned level a. If the errors ei are normally distrib- 
uted, then under Ho the zi are standard normal. Thus 
using the Sidak (1967) inequality we can choose k to 
be the upper a* = ?{1 -(1 - a)1P} point of the stan- 
dard normal distribution. 

Given a subset of significantly large nodal imbal- 
ances, Mah et al. (1976) offered an algorithm (for the 
pure network constraints case) for identifying those 
stream measurements that may contain gross errors 
and thus contribute to nodal imbalances. If no 
streams are identified as containing gross errors cor- 
responding to a significantly large nodal imbalance, 
then the latter is attributed to a leak or deposition at 
the node that is unaccounted for in the constraint; 
alternatively, the constraint may have been misspeci- 
fied. 

Although it is possible to extend this algorithm to 
the case of general balance matrices, the applicability 
of the basic algorithm itself is limited by the assump- 
tion that the gross errors in different streams incident 
at a given node (i.e., either entering or leaving a given 
node) do not cancel out. Because of this, nodal tests 
are more useful as supplementary tests to verify the 
presence of gross errors. 

Measurement Test 

Since it is the measurements that contain gross 
errors (excluding the possibility of misspecified con- 
straints), a more direct approach would be to base 
the gross error detection test on the individual re- 
siduals (also referred to as adjustments) ri. Mah and 
Tamhane (1982) proposed such a test. Tamhane 
(1982) showed that the test based on the transformed 
residual vector 

r* = 2-lr 

= C'(CEC')- (Cy -d) (4.4) 
has certain optimality properties for detecting the 
presence of a single gross error. (When L is diagonal, 
the tests based on r and r* are the same.) Based on 
this result, Mah and Tamhane (1982) recommended 
the use of this test for detecting gross errors, which is 
explained below. 

First note that, under the hypothesis, Ho, that 
there are no gross errors present, we have 

E(r*) = 0 and cov(r*) = C'QC, (4.5) 
where we have put nl = (CC')- '. Therefore the ith 
measurement can be tested for a gross error by using 
the statistic 

=zl_ Ir*l - c'fl(Cy- d) i 

/(C,'~"nc),ii x ~/' ^(4.6) i 
(4.6) 
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The test concludes that a gross error is present in the 
ith measurement iff 

I zi I > k, 1 < i < n, (4.7) 

where, as before, k may be chosen to be the upper 
C* = ?{1 - (1 - a)/n} point of the standard normal 
distribution. 

Note that if ci is a null vector, then r* is identically 
zero and (4.6) cannot be calculated. However, ci = 0 
does not imply that ri = 0; that is, the corresponding 
adjustment is not necessarily zero. The latter is true if 
the ith measurement is uncorrelated with all of the 
other measurements. We shall see an illustration of 
this case in the example of Section 6. 

Having identified a set of measurements as con- 
taining gross errors, we can delete them and find the 
adjuted value (|, il) by the procedure described ear- 
lier. These adjusted values should be used in subse- 
quent applications. 

We now point out a difficulty associated with the 
use of the measurement test for detecting gross 
errors. Suppose that the only constraint in Example 
1 was the total mass balance constraint: r/ + 2 2- 
r/3 - 4 = 0. By substituting C = B = (1, 1, -1, -1) 
in (4.6) it can be checked that in that case, I z =l 
[Z2 = [Z3 = Z41 for all y and for arbitrary S. Thus 
for the given y = (Yl, Y2, Y3, y4)' and v = diag(a2, 
a2, a2, a2) (say), we obtain I zi = l Y~ + Y2 - Y3 
Y4 I /(Z 72)1/2 = .625 for 1 < i < 4. This means that if 
a gross error is present, its location is nonidentifiable 
unless the total mass balance constraint is augmen- 
ted with additional information (such as the compo- 
nent balance constraints given in Example 1). 

By working through a few simple examples, the 
reader can verify that this phenomenon of nonidenti- 
fiability of gross errors occurs in the pure network 
constraints case whenever there are two streams join- 
ing the same two nodes (one of which may be the 
environment node). In such a case the zi | statistics 
are identical for the two streams. The following prop- 
osition treats this problem in greater generality and 
gives a necessary and sufficient condition for the two 
I zi I statistics to have identical values. 

Proposition 3. Let ci and c; be two columns of the 
transformed balance matrix C associated with the 
measured variables. Then for arbitrary 1, I zi = I zj | 
with probability 1 iff there exists a real constant 
p 0 such that pc1 = Cj-that is, iff ci and cj are 
collinear. 

Proof. Note that I zi = I zj I for all y, and for arbi- 
trary 1 

I C'c, I/x = I C' ncj I /./Cj ncj 
-~:* 

pc,lci = C') 0 for some p ? 0 

(4.8) 

From (4.8) it follows that pci = cj is a sufficient con- 
dition for zi = | Zj I to hold for all y and for arbi- 
trary 1. To show the necessity part, suppose that 
pci : cj in (4.8). Then for (4.8) to hold, it must be true 
that the columns of C'Q = C'(CIC')-1 are linearly 
dependent. But this is impossible, since rank 
(C'Q) = p = the number of columns of C'Q. This 
contradiction proves the necessity part. 

It can be readily checked that zi = zj (zi =-zj) for 
all y and for arbitary E iff p > 0 (p < 0). Thus in the 
pure network constraints case if two streams i and j 
are both inputs (from environment) to a node, then 
zi = Zj, and if one is input (from environment) and 
the other is output (to environment), then zi = -z 
for all y and for arbitrary L. 

Note that pbi = bj for some p ?= 0 (where bi and bj 
are the ith and the jth columns of B, respectively) is a 
sufficient but not necessary condition for pci = c; to 
hold. In other words, even when the ith and the jth 
columns of the original balance matrix B are not 
collinear, the corresponding columns of the trans- 
formed balance matrix C can be collinear. This will 
happen when pbi - bj is in the null space of P (= the 
column space of A). See, for instance, columns for 
H2'1 and H{25) in matrices B and C of the example in 
Section 6. 

In summary, to avoid the nonidentifiability prob- 
lem it is necessary to incorporate enough balance 
constraints (usually involving additional stoichio- 
metric information) so that no two columns are col- 
linear. We also note that if n' (n' < n) is the number 
of distinct I zi I statistics, then one should choose k in 
(4.7) to be the upper {1- (1- _ /n"'} point of the 
standard normal distribution that gives a less conser- 
vative test. 

The power of the measurement test has been stud- 
ied using computer simulation by lordache et al. 
(1985). These authors evaluated the influence of the 
following factors on the power of the measurement 
test: the magnitude of the gross error, the standard 
deviations of the measurements, the location of the 
gross error in the network, the size of the network, 
the balance constraints (in particular, the extent of 
collinearity between any two columns of the balance 
matrix B), and so forth. The interested reader is re- 
ferred to their article for additional details. 

We now return to Example 1 and illustrate the 
three gross error detection tests discussed in this sec- 
tion. 

4.2 Example 

Example 1 (continued). We first apply the mea- 
surement test. In this problem P = I, d = c = 0, and 

.1 .6 -.2 -.7 
C =B= .8 .1 -.2 -.1 . 

.1 .3 -.6 -.2 
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Using (3.8) we compute y=(.1676, 4.8593, 1.1730, 
3.8538)', and therefore r = y- = (-.0182, .0660, 
-.0565, -.0260)'. Since L is diagonal in this exam- 
ple, the zi statistics computed from r will be identical 
to those based on r* [compare (4.4)] and they are 
given by z = (- 1.08, 2.73, -2.62, -.13)'. Taking 
- = .05 we find that the upper oc* = ?{1- 
(.95)1 4' = .00637 point of the standard normal distri- 
bution is 2.491. We thus conclude that the second 
and third measurements are possibly contaminated 
with gross errors but not the first and fourth ones. 

Next consider the global test. The Z2 statistic is 
2 

= r'(C'(CEC') -'C')-r = 8.455. Alternatively, 
the Z2 statistic can also be calculated from w= 
(-.0672, -.0059, -.0571)' and its covariance matrix 

205.26 
Q- 1 = C2C' = 29.96 

_ 61.22 

29.96 
6.33 
9.67 

61.22 
9.67 

20.35 

yielding Z2 = w'Qw = 8.455. Since this value exceeds 
2L-5 = 7.815, the upper 5% point of the Z2 distri- 
bution with three degrees of freedom, presence of 
gross errors is indicated in the measurements. 

The /2 statistics obtained by deleting Y' through 
y'4 (one Yi at a time) are 7.295, .964, 1.570, and 8.437, 
respectively. Comparing these with /2.o5 = 5.992 we 
find that deleting '2 or y3 yields nonsignificant x2 
values, and thus gross errors may be suspected in 
these two measurements. We illustrate the calcula- 
tion of /2 when Y2 (say) is deleted. In this case the 
new quantities are 

.1858 .6 .1 -.2 -.7 
y = 1.2295 , A= .1 , B= .8 -.2 -.1 , 

3.8800 .3 _.1 -.6 -.2 

and L=diag(2.89 x 10- 4, 5.76 x 10 4, 4.00 x 10-2). 
From A we get 

P.= 
0 

6 0 
3 -1 

and then 

C =PB= -4.7 1.0 -. 1 
2.3 0 -.1_' 

- .03 18 
w = Cy = 0393 

_ .0393_' 
and 

1- l = cL,-^ =73.60 
- 27.24 

-27.24 

19.29_' 

Finally we compute /2 = w'Q2w = .964. 
We may wish to confirm the result just obtained 

by deleting measurements in pairs. The x2 statistics 
obtained by deleting ('l, Y2), (Yl, Y3) (Y,, Y4), (Y2, Y3), 
(Y2, 1'4), and (Y3, y4) are .552, .147, 7.273, .802, .343, 
and 1.440, respectively; these values may be com- 

pared with 2.os5 = 3.843. It is interesting to note 
that the deletion of (Y2, 13) does not yield the least 
significant Z2, but the deletion of (yl, Y4) yields the 
most (and the only) significant Z2 (at a = .05). Also 
note that the deletion of (yl, Y3) yields the least sig- 
nificant Z2, although when only yi was deleted, a 
highly significant /2 was obtained. This illustrates the 
phenomenon referred to in the discussion of the 
global test. 

In summary, using the global test, gross errors are 
indicated in Y2 and v'3; of course, the final decision 
should be made by the process engineer, taking into 
account all of the information available to him in- 
cluding the results of the gross error detection tests. 
By deleting '2 and y3 together we can compute the 
adjusted vector y = (.1722, 4.6242, 1.0201, 3.9616)' 
from (3.8) and (3.9). 

We finally note that the three nodal test statistics 
[compare (4.3)] corresponding to the three con- 
straints are .47, .24, and 1.26, all of which are non- 
significant. Thus the nodal test fails to detect the 
presence of gross errors in Y2 and y3. This failure of 
the nodal test can be explained by the fact that the 
gross errors in Y2 and Y3 approximately cancel out. 

5. NONLINEAR CONSTRAINTS 

Nonlinear constraints may arise for a variety of 
reasons. Typically they arise because some coef- 
ficients in the balance matrices A and B are not ex- 
actly known (e.g., as assumed in Example 1) and are 
either unmeasured or measured variables. This re- 
sults in the corresponding constraints of (2.2) being 
bilinear; that is, they involve terms that are products 
of two unknown parameters (d's or q's). For example, 
consider a multicomponent stream input into a node 
that is split into two output streams. Then the split 
fraction is the same for each component. If this frac- 
tion is unknown (and hence is to be estimated from 
the data), then the resulting set of constraints are 
bilinear; see the example of Section 6 for an illustra- 
tion. Another example of a bilinear constraint arises 
in balancing energy flow rates when the energy flow 
rates are not directly measured but are calculated 
from the products of mass flow rates and temper- 
ature changes, both of which may be measured. Non- 
linear constraints may also arise because certain vari- 
ables are measured indirectly and the relationship 
between the variable actually measured and the vari- 
able of interest may be nonlinear. For example, con- 
centration may be measured via density, pH values, 
or thermal conductivity. 

Let us replace (2.2) by q x 1 constraint vector 

f(4, q) = 0, (5.1) 
where f= (f, f2 ... , fq)' and each fi(4, r) may be 
nonlinear in both 4 and qi. Knepper and Gorman 
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(1980) proposed a Gauss-Newton type iterative algo- 
rithm for estimating 4 and q. The algorithm is initiat- 
ed with some starting values 4(O) and q(o), where q(o) 
is usually taken to be the observed vector y. To find 
the estimates 4(i+1) and q(i+ ) at the (i + l)th stage of 
the algorithm, f(4(i+ l), i(i+ 1)) is approximated by a 
first-order (linear) Taylor series expansion around 
(E(i), tl()) and then equated to 0. The resulting set of 
equations is solved for 4(l+1) and q(i+l) by a combi- 
nation of the least-squares method for 4(i+ l) and the 
weighted least-squares method for qii+ 1). We get the 
following expressions for 4(i + ) and (i + ): 

~(i+ 1)_ -(i) = (G(i),Q(i)G(i))- 1G(i)Q(i) 

x {-f((i), (i)0) + H(i)(li') - 
1(0))} (5.2) 

and 

qi/+ 
~) _ (O) = ,H(O, 

x [I - G(')(G()'Q(')G())- G(i)'Q(')] 

x {-f( (i), 1('0) + H(i)(i-(i)- rl(?))}. (5.3) 

Here G('): q x m and H(/): q x n are the matrices of 
first partial derivatives of f with respect to 4 and iq, 
respectively, evaluated at (4(i), l(i)), and Q'i)= 
(H(i)H(/)')-1. The final estimates (4, fi) are taken to 
be (4(i), q(i)) when the algorithm converges. See Britt 
and Leucke (1973) for additional details, including 
the statistical properties of the estimated parameters. 

Crowe et al. (1983) dealt with the special case of 
bilinear constraints in which some entries of A and B 
are unknown; these are assumed to be unmeasured. 
Let ': I x 1 denote the vector of these unknown en- 
tries. Thus the matrices A, B, P, and C are functions 
of ~. To estimate ~, Crowe et al. (1983) proposed the 
following method. 

Let 

L = (y - )'- l(y -_ l) + '(C1 - d) (5.4) 

be the Lagrangian function associated with the con- 
strained optimization problem (3.4), where ;: p x 1 is 
a vector of Lagrange multipliers. For some given 
values of 'q and X, let 

aL/ac, = '[(C/S)q - (9d/C,)], 1 i < k, (5.5) 

where in most cases aC/in and cd/oi v will be a con- 
stant matrix and a constant vector, respectively. The 

.82 
1.14 
5.12E 

1.14 
6.34 

3 1.42E 

method consists of solving for q [using (3.8)] and k 

using some initial estimate of g and updating that 
estimate by the steepest descent or the secant method 
[which requires the first partials (5.5)]; this scheme is 
iterated until convergence is reached. Crowe et al. 
(1983) suggested that inferences concerning gross 
errors be made by regarding the final estimate ~ as a 
fixed quantity, but the validity of this suggestion is 
questionable. 

6. A COMPREHENSIVE EXAMPLE 

Example 3 (Crowe et al. 1983). The flow diagram 
for ammonia synthesis is shown in Figure 4. A feed 
stream containing nitrogen (N2), hydrogen (H2), and 
argon (Ar) (an inert impurity) is mixed with the recy- 
cle stream 7 at node 1. The reaction according to 
(2.3) takes place in the reactor (node 2). The product, 
ammonia (NH3), is recovered in the separator (node 
3), and the unreacted gases are recycled to the splitter 
unit (node 4), where an unknown fraction of them is 
purged from the system (to avoid the buildup of 
argon). 

To make it easier to refer to the various chemical 
components involved, a different notation is used in 
the sequel. The flow rate of component A in stream i 
is denoted by A(i). Observed and reconciled flow rates 
are not denoted by separate symbols, but they are 
labeled accordingly in the tables to follow. The rate 
of change of the extent of reaction (2.3) is denoted by 
c. Finally, the fraction of N2, H2, and Ar purged 
through stream 6 is denoted by (. Both ~ and C are 
unmeasured variables. 

The matrices A and B are given in Figures 5 and 6. 
Note that for each node we have a separate mass 

flow balance for each component. At node 4, in addi- 
tion to the component mass flow balances, we have 
the splitter constraints, which state that the ratio of 
mass flow rate in stream 6 to that in stream 5 is the 
same for N2, H2, and Ar; this ratio is C, the fraction 
purged. In the sequel we shall see the effect of ignor- 
ing the splitter constraints on data reconciliation. 
Also note the stoichiometric coefficients in the last 
column of A, which are taken from the reaction 
equation (2.3). 

The covariance matrix of the measured flow rates 
is assumed to be known and equal to 

Ar(l) N(22) Ar(2) N(3) NH(4) H(5' 

5.12E-3 
1.42E - 4 

4 1.28E - 4 
8.16 .816 
8.16 .326 

3.81 
3.08 

3.20 
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Purge 

1 

N2 ,H2 Ar 

Mixer Reactc 

Figure 4. Flow Diagram for Examp 

The block-diagonal nature of I comes from the as- 
sumption that the measurements in the same stream 
are correlated but those in different streams are un- 
correlated. 

Table 2 gives the results of the tests for detection 
of gross errors. Table 3 gives the observed and recon- 
ciled values of the measured variables under different 
conditions. Table 4 gives the reconciled values of the 
unmeasured variables under the same conditions. 
Note that in Table 2 the number of nodal test statis- 
tics in each case is the difference, p, between the 
number of original constraints and the total number 

5 
N2 ,H2 ,Ar 

:er 

3 Separator 

N2, H2 

Ar,NH 
NH3 

ammonia synthesis loop 

le 3 (ammonia synthesis loop). 

of unmeasured variables and deleted measurements. 
In this example there are 17 constraints, including 
the 3 splitter constraints; 13 unmeasured variables; 
and 0, 1, or 2 deleted measurements. All of the matrix 
computations were performed using standard sub- 
routines in the IMSL package. 

The measurement tests are based on the trans- 
formed residuals, since I is not diagonal. The 
measurement test statistics are not computed for de- 
leted variables and for those variables for which the 
corresponding columns of C are null vectors. 

The significance level used for each measurement 

H(2' H(3 NH33' Ar(3 N(5) Ar(5) N(26 H(6 Ar'6' N27) H27) Ar (7 

-3 
2 

-1 

Figure 5. Matrix A for Example 3. 
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N2 

Node 1 H2 
Ar 

N2 
H2 

Node 2 NH3 
Ar 

N2 
H2 

Node 3 NH3 
Ar 

N2 
Node 4 H2 

Ar 

Splitter N2 
Con- H2 
straints Ar 

-1 

Figure 6. Matrix B for Example 3. 

test is a* = ?{(1 - (1 - )1/n'}, where n' is the number 
of distinct Izi statistics. Similarly, the significance 
level used for each nodal test is a*= {1-(1-a) /P}. 
The test results significant at a = .05 are indicated by 
asterisks. We now discuss the results in detail. 

First consider Case 1, where no measured vari- 
ables are deleted. By regarding ( as a known fixed 
quantity, we can find a projection matrix P; here we 
have q = 17 and r = m = 13; thus p = q - r = 4. 
One choice of P is 

0 

P= 
I 

0 
0 

00 
00 
1 0 
0 1 

1 0 
00 
0 1 
00 

.5 
0 

1.5 
0 

0 
0 
0 

1 - 

of B were not collinear; this refers to the remark 
made in the second paragraph following Proposition 
3. 

The nodal test for the third constraint (refer to C 
given before) also gives a modestly significant result 
(P = .15). Note that both H2I) and H(25) enter this 
constraint but N() does not. Nonetheless, we shall 
explore the effects of deleting each one of these 
measurements (separately and in groups). In making 

0 
1 - 

~ 

0 
0 

0 
0 
1 
0 

.5 
0 

1.5 

0 
0 
0 

1 -C 

0 
1 
0 
0 

0 
0 
1 
0 

00 
0 1 
00 
1 0 

which yields 

0 

C = PB =I 

L o 

0 
0 
1 
0 

0 
0 
0 
1 

1 
-1 

0 
0 

0 
0 
0 -C 

-1 
1 -C 

0 
0 

-.5 
0 

-1.5 
0 

00 
0 0 
1 0 ' 

0 1 

o?1 
o] 
0 

0 

A simple physical interpretation can be given to the 
rows of C. They correspond to an elemental nitrogen 
balance around the reactor, the split condition for 
nitrogen, and the overall elemental balances on hy- 
drogen and argon, respectively. 

The unknown split fraction ( is estimated to be 
.02003, using the algorithm suggested by Crowe et al. 
(1983). In this case all three gross error tests are trig- 
gered. In particular, the measurement test points to 
H(21), H(25), and N(2') as potential culprits. Note that 
the measurement test statistics for H(21) and H5) are 
identical because the corresponding columns of C are 
collinear. Note also that the corresponding columns 

the ensuing calculations we can replace the B matrix 
with the C matrix calculated before; there is no A 
matrix in the transformed problem. When H"2) (say) 
is deleted, the new A matrix is the corresponding 
column of the C matrix, namely, (0, 0, 1, 0)', and the 
new B matrix is formed by the remaining columns of 
the C matrix. It is then straightforward to find a new 
P that is orthogonal; the new A = (0, 0, 1, 0)'. Let us 
now look at the results obtained by deleting H21), 
H?), and N"). 

In Case 2, when H") is deleted the results of all the 
gross error detection tests are acceptable. Moreover, 
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Table 2. Results of Gross Error Detection Tests 

Nodal Test Statistics Measurement Test Statistics 
Global x2 

Cases Statistic 1 2 3 4 N(1) H( Ar(1) N(22 Ar(2) N(3) NH() H(25 

1. No measurements deleted 
( = .02003) 15.78* .28 .11 2.22 .29 3.18* 3.92* .05 .40 .05 .66 1.04 3.92* 

2. H(1) deleted 
(= .01976) .29 .28 .10 .05 - .44 - .01 .17 .01 .20 .52 

3. H?( deleted 
(- .01976) .29 .28 .10 .05 - .44 - .01 .17 .01 .20 .52 

4. N(,1) deleted 
( -= .02030) 5.52 .28 2.24 .62 - 2.26 .16 .70 .16 .70 2.09 2.26 

5. H(1) and H(25 deleted 
(= .01976) .29 .28 .10 .05 - .44 - .01 .17 .01 .20 .52 - 

6. H') and N(2) deleted 
( = .02000) .11 .28 .25 - - - - .18 .22 .18 .22 .22 - 

7. H(5) and N(1) deleted 
(? = .02000) .11 .28 .25 - - - - .18 .22 .18 .22 .22 

8. Splitter constraints deleted 
( = .02003) .08 .28 - - - - - - .28 - .28 .28 

*A result significant at the a = .05 level. 

all of the reconciled values appear reasonable. In this 
case we do not have a measurement test for H2 
because the column for H(25 in the new C = PB 
matrix is a null vector. This is because the new 
A = (0, 0, 1, 0)' is collinear with the column for H(5), 

(0, 0, - C, 0)', and hence the new P that is orthogonal 
to A is also orthogonal to the column for H(. Note 
that the adjustment ri for H(25) is zero because H5) is 
uncorrelated with other measurements. 

In Case 3, when H() is deleted all the test statistics 
are identical to the ones obtained by deleting H?(2' 
[again because of the collinearity of the columns for 

H?) and H5)] and are thus acceptable. However, the 
reconciled H2 flows in streams 2, 3, 5, 6, and 7 are 
negative. Note here that although no measurement 
test is available for H(), the latter is adjusted (the 
corresponding ri = 89 - 88.59 = .41); this is because 
H() is correlated with N(2) and Ar"(). 

In Case 4, when N(1) is deleted, reasonable values 
are obtained for all of the reconciled measurements, 
but x2 = 5.52 is modestly significant (P = .1374). 
Moreover, the nodal test statistic for the second con- 
straint and the measurement test statistics for H(2 
and H5) are modestly significant. 

Table 3. Observed and Reconciled Values for Measured Variables 

Flow Rates (molls) 

Cases N(21 H(21) ArM() N(22 Ar(2) N(23) NH(34) H 2') 

Observed Values 33.0 89.00 .400 101.00 20.20 69.00 62.00 205.00 

Reconciled Values 

1. No measurements deleted 
( = .02003) 31.68 94.95 .403 100.05 20.12 69.77 60.56 204.89 

2. H2) deleted 
(C = .01976) 32.70 98.04 .398 100.56 20.15 69.23 62.66 205.00 

3. H'' deleted 
(= .01 976) 32.70 88.59 .398 100.56 20.15 69.23 62.66 -273.39 

4. NW1] deleted 
( = .02030) 31.05 93.05 .410 99.44 20.10 69.81 59.26 204.96 

5. H',) and H() deleted 
( = .01976) 32.70 -* .398 100.56 20.15 69.23 62.66 -* 

6. H`' and N2'1) deleted 
( .02000) 32.43 97.25 .401 100.29 20.07 69.24 62.10 205.00 

7. H'"5 and N(2' deleted 
( =.02000) 32.43 89.16 .401 100.29 20.07 69.24 62.10 -199.33 

8. Splitter constraints 
deleted 

( = .02003) 33.00 89.00 .400 100.36 20.14 69.30 62.12 205.00 

*This flow rate cannot be uniquely estimated as a consequence of Proposition 2. 
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Table 4. Reconciled Values for Unmeasured Variables 

Flow Rates (mol/s) 

Cases H(2) H(3) NH(3) Ar(3) N(5) Ar() N(6) H(6) Ar(6) N(7) H7) Ar 7) 

1. No measurements deleted 
(C=.02003) 295.74 204.89 60.56 20.12 69.77 20.12 1.40 4.10 .40 68.37 200.79 19.72 30.28 

2. H('_ deleted 
(C =.01976) 298.99 205.00 62.66 20.15 69.23 20.15 1.37 4.05 .40 67.86 200.95 19.75 31.33 

3. H',5' deleted 
(.= .01976) -179.40 -273.39 62.66 20.15 69.23 20.15 1.37 -5.40 .40 67.86 -267.99 19.75 31.33 

4. N I deleted 
( =.02030) 293.85 204.96 59.26 20.10 69.81 20.10 1.41 4.16 .41 68.39 200.80 19.69 29.63 

5. HI"2 and H5) deleted 
( =.01976) * * 62.66 20.15 69.23 -* -* * * 67.86 -* 19.75 31.33 

6. H'" and N(21) deleted 
(C=.02000) 298.15 205.00 62.10 20.07 69.24 20.07 1.38 4.10 .40 67.86 200.90 19.67 31.05 

7. H(' and N,) deleted 
(C=.02000) -106.17 -199.33 62.10 20.07 69.24 20.07 1.38 -3.99 .40 67.86 -195.34 19.67 31.05 

8. Splitter constraints deleted 
( = .02003) 293.18 205.00 62.12 20.14 69.30 20.14 1.94 -4.18 .40 67.36 209.18 19.74 31.06 

* This flow rate cannot be uniquely estimated as a consequence of Proposition 2. 

Based on the test results thus far, we may suspect a 
gross error in Hi21). Cases 5, 6, and 7 give the results 
obtained by deleting HI2'), H125), and N"2) in pairs. We 
note that deleting H2) and N'2") gives acceptable re- 
sults, but deleting H5) and N2)9 gives negative recon- 
ciled values for several flow rates. We also note that 
deleting H"2) and HI2) results in the corresponding A 
matrix being less than full column rank, which causes 
several unmeasured variables [including the deleted 
variables HI21) and H25)] to be not uniquely estimable; 
in this case there are no measurements on H2 flows 
and thus H2 flows are clearly not estimable. These 
sets of tests confirm the earlier conclusion of a gross 
error in HI21 and, together with the previous test re- 
sults, they suggest that N"2) may also contain a gross 
error. 

Case 8 is intended to show the effect of omitting 
the three splitter constraints. In that case all three 
gross error tests are passed and the reconciled values 
look reasonable except that H26) comes out negative. 
This case illustrates the danger of using an incom- 
plete constraint set. Here, since the number of con- 
straints is reduced to 14 and there are 13 unmeasured 
variables, the system is almost unconstrained (the 
"trivial" estimate case of Theorem 1). Only slight ad- 
justments are made in some unmeasured variables, 
which causes the gross error detection tests to not 
trigger. 

7. CONCLUDING REMARKS AND 
DIRECTIONS FOR FUTURE RESEARCH 

This review suggests a number of research prob- 
lems of potential interest to statisticians. We briefly 
discuss some of these problems next. 

1. All of the results for the steady state are given 

under the assumption of known E. In practice, one 
must estimate E from the data. If the process is in a 
steady state and the successive measurement vectors 
are independent, then Y can be estimated without 
much difficulty. The consecutive observations would 
generally be correlated, however, and in that case it 
is far from clear what are good ways to estimate E. 
Moreover, there is the problem of modifying the data 
reconciliation and gross error detection procedures 
to account for estimated 2. 

2. Another problem in the case of time-dependent 
observations, which has not been addressed in the 
literature, is how to take into account the depen- 
dence structure (typically unknown) in computing 
smoothed averages and using them for reconciliation 
and gross error detection purposes. Note that this 
problem is present even when E is assumed known. 

3. As we have seen, in the case of linear con- 
straints, the unmeasured variables can be readily 
eliminated from the constraints and a closed-form 
solution [compare (3.8) and (3.9)] can be obtained for 
the data reconciliation problem. A corresponding re- 
duction of the problem is not available when the 
constraints are of general nonlinear nature. Thus ef- 
ficient computational methods are needed to deal 
with this case. Knepper and Gorman (1980) made a 
contribution in this direction, but the computational 
efficiency of their algorithm remains to be tested. 
Much theoretical work is also needed concerning the 
statistical properties of the gross error detection tests 
for the nonlinear case. 

4. The closed-form solution to the constrained 
weighted least squares problem does not take into 
account the natural nonnegativity restrictions on the 
flow rates and other quantities. We saw in Example 3 
that nonnegativity restrictions are crucial in a "cor- 
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rect" scheme for gross error detection. Hence one 
should explicitly take them into account. However, 
this will make the data reconciliation and gross error 
detection procedures considerably more complicated. 

5. In practice, the failure to satisfy the balance 
constraints may result not only because of random 
and gross errors in measurements but also because of 
misspecifications of the constraints. It would be de- 
sirable to have a combination of measurement tests 
and nodal tests that would properly identify the cul- 
prits. However, this seems possible only under very 
restrictive assumptions (as in Mah et al. 1976). 

6. Finally, we note that only the steady state pro- 
cesses are considered in this article. In the nonsteady 
state case, the Kalman filter model has been used by 
Stanley and Mah (1977) for the data reconciliation 
problem and by Newman (1982) for the gross error 
detection problem. However, the methodological de- 
velopments lag far behind compared to the steady- 
state case. 

It is our hope that this review article will en- 
courage more statisticians to work on the related 
problem areas, including the ones suggested here. 
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